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ĆWICZENIE SCENARIUSZOWE

- System rekomendacji online
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ĆWICZENIE SCENARIUSZOWE
- System rekomendacji online

Wnioski 805.

Bibliografia 806.

Wprowadzenie 402.

Prezentacja narzędzi 603.

Streszczenie 301.

Zajęcia praktyczne 704.
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To ćwiczenie oparte na scenariuszu stawia studentów w roli praktyka uczenia 
maszynowego (ML), którego zadaniem jest analiza sprawiedliwości 
internetowego systemu rekomendacji. Bada ono, w jaki sposób ciągłe 
dostosowywanie się do zachowań użytkowników może z czasem wzmacniać 
istniejące uprzedzenia. Studenci będą mieli za zadanie zidentyfikować 
uprzedzenia i ocenić strategie ich łagodzenia.

Cel/przeznaczenie.

Ćwiczenie scenariuszowe 
z wykorzystaniem Google 
Colab (riverML)

Rodzaj OER.

01 Streszczenie

Student będzie potrafił:
• Zidentyfikować potencjalne źródła stronniczości w 

rekomendacjach generowanych przez ML;
• Porównać wskaźniki sprawiedliwości, takie jak parytet 

demograficzny i równość ekspozycji;
• Zrozumieć, w jaki sposób pętle sprzężenia zwrotnego wpływają 

na sprawiedliwość w systemach rekomendacji online w miarę 
upływu czasu.

Oczekiwane efekty kształcenia:.

Nauka oparta na 
problemach.

Sugerowane:
Metodologiczne:
Podejście:• Uczenie maszynowe

• Rekomendacje
• Stronniczość
• Sprawiedliwość

Słowa 
kluczowe:
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02 Wprowadzenie

W kontekście coraz bardziej spersonalizowanych
doświadczeń cyfrowych systemy rekomendacji
oparte na sztucznej inteligencji odgrywają
kluczową rolę w kształtowaniu zachowań
konsumentów, wpływaniu na decyzje zakupowe
oraz określaniu widoczności produktów i treści
w różnych segmentach użytkowników.

Chociaż systemy te oferują znaczne korzyści w
zakresie marketingu i optymalizacji działalności,
budzą one również pilne obawy etyczne i
regulacyjne, szczególnie w odniesieniu do
sprawiedliwości, przejrzystości i potencjalnej
dyskryminacji (Akter et al., 2022; Bozdag, 2013).

Systemy rekomendacyjne nie są jedynie
artefaktami algorytmicznymi, ale złożonymi
konstrukcjami socjotechnicznymi, na które
wpływają decyzje ludzkie na każdym etapie – od
gromadzenia danych i projektowania modeli po
interpretację wyników i wdrażanie (Bozdag, 2013).
Stronniczość może wynikać z wielu źródeł: ludzkich
uprzedzeń, ograniczeń technicznych lub
niezgodności kontekstowych. Szczególnie w
środowiskach marketingowych stronniczość ta
może się wzajemnie oddziaływać i nasilać,
kształtując nie tylko wydajność systemu, ale także
doświadczenia użytkowników i skutki społeczne
(Akter et al., 2022).

Istotną kwestią jest iteracyjny charakter systemów
rekomendacyjnych, które opierają się na opiniach
użytkowników w celu ponownego szkolenia i
udoskonalania modeli predykcyjnych. Ta pętla
informacji zwrotnej może wzmacniać istniejącą
nierównowagę między danymi wejściowymi a
wynikami, prowadząc do utrzymujących się
dysproporcji w czasie (Sun et al., 2020). Ponieważ
modele stale uwzględniają nowe dane i
preferencje użytkowników, ich sprawiedliwość i
dokładność podlegają dynamicznym zmianom. Jeśli
nie zostanie to skontrolowane, może to skutkować
nadmiernym dostosowaniem do dominujących
zachowań użytkowników, pogłębiając
niedostateczną reprezentację grup
mniejszościowych i ograniczając różnorodność
treści — zjawisko związane z algorytmicznym
gatekeepingiem i wzrostem popularności baniek
filtrujących (Harambam et al., 2018).
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Zainspirowane tymi wyzwaniami ćwiczenie 
oparte na scenariuszach zachęca studentów do 
zgłębiania etycznych aspektów systemów 
rekomendacyjnych, wykorzystując zbiór danych 
MovieLens 100K jako platformę testową. 

Poprzez praktyczne eksperymenty studenci badają,
w jaki sposób algorytmiczne pętle sprzężenia
zwrotnego mogą nieumyślnie wzmacniać
nierówności, w szczególności poprzez
zniekształcanie widoczności treści i faworyzowanie
preferencji większości. Zachęca się ich do zbadania
zarówno technicznych, jak i etycznych aspektów
tych systemów, łącząc wiedzę teoretyczną z
praktyczną analizą. Takie podejście pedagogiczne
sprzyja krytycznej świadomości ryzyka związanego
z nieetyczną personalizacją, w tym utratą zaufania
konsumentów, szkodą dla reputacji i ograniczonym
dostępem do możliwości dla użytkowników

marginalizowanych. Ćwiczenie podkreśla, że
sprawiedliwość w sztucznej inteligencji nie jest
statyczną oceną, ale dynamiczną, ciągłą
odpowiedzialnością. Wraz z ewolucją preferencji
użytkowników i zmianami treści, modele muszą się
dostosowywać, aby zachować zrównoważoną
wydajność we wszystkich grupach użytkowników.
Ostatecznie to doświadczenie edukacyjne
wyposaża studentów w narzędzia do
projektowania systemów sztucznej inteligencji,
które są nie tylko skuteczne i wydajne, ale także
sprawiedliwe, przejrzyste i społecznie
odpowiedzialne.

01. Błąd bezwzględny oszacowania — mierzy 
bezwzględny błąd między przewidywaną oceną a 
rzeczywistą oceną przyznaną przez użytkownika u 
pozycji I, definiowany jako:

02. Błąd przeszacowania – mierzy, o ile prognoza 
przeszacowuje rzeczywistą ocenę, definiowany jako:

03. Błąd niedoszacowania – mierzy, o ile prognoza 
zaniża rzeczywistą ocenę, definiowany jako:

04. Błąd oszacowania wartości – mierzy błąd ze 
znakiem między przewidywaną oceną a  rzeczywistą 
oceną, definiowany jako:

Wskaźniki sprawiedliwości.
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03 Prezentacja narzędzi

01. Nierównomierny rozkład 
reprezentacji w grupach 
demograficznych;

02. Nierównomierny rozkład ocen;

03. Nadmierna reprezentacja 
popularnych pozycji.

Cechy te sprawiają, że MovieLens 100K 
idealnie nadaje się do badania 
stronniczości i sprawiedliwości 
algorytmów rekomendacji.

Chociaż jest to przydatne do 
testowania algorytmów,W tym ćwiczeniu

wykorzystano zbiór danych
MovieLens 100K,
powszechnie stosowany
punkt odniesienia w
badaniach nad systemami
rekomendacji. Zbiór danych
zawiera 100 000 ocen, 943
użytkowników, 1682 filmy, a
także dane demograficzne
użytkowników (np. wiek,
płeć, zawód).

Zbiór danych zawiera istotne .

wyzwania związane z 
uczciwością.

RiverML1 to biblioteka open source w języku
Python, zaprojektowana specjalnie do uczenia
maszynowego na strumieniach danych. Zapewnia
narzędzia do tworzenia, szkolenia i oceny modeli,
które uczą się stopniowo na podstawie danych
przychodzących w czasie rzeczywistym, a nie w
partiach. RiverML obsługuje zarówno algorytmy
uczenia nadzorowanego, jak i nienadzorowanego,
oferując funkcje takie jak adaptacyjne uczenie się,
wykrywanie dryfu koncepcyjnego i wstępne
przetwarzanie strumieni. Jego modułowa

konstrukcja ułatwia łączenie modeli, etapów
wstępnego przetwarzania i strategii oceny, co
czyni go potężnym narzędziem do zastosowań
związanych z uczeniem się online, takich jak
wykrywanie oszustw, systemy rekomendacji i
analiza danych z czujników. Metryki
sprawiedliwości dostępne w bibliotece zostały
wdrożone przez zespół FEP, przyczyniając się do
etycznej oceny modeli strumieniowych.

Narzędzie to umożliwia 
wykonywanie procesów 
oceny sprawiedliwości 

oraz wizualne 
porównanie 
skuteczności 

rekomendacji w różnych 
grupach i w czasie.

1. Samouczek Riverml — https://riverml.xyz/latest/introduction/installation/ 

http://1https/riverml.xyz/latest/introduction/installation/
http://1https/riverml.xyz/latest/introduction/installation/
http://1https/riverml.xyz/latest/introduction/installation/
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04 Ćwiczenia praktyczne

01. Wejdź na stronę https://tinyurl.com/5n8vvpx9, żeby otworzyć 
dostarczony notatnik Jupyter.

02. Uruchom wszystkie komórki w notatniku (kliknij kartę Runtime, a 
następnie Run All).

03. Przeanalizuj i porównaj wskaźniki sprawiedliwości w różnych 
grupach użytkowników (np. według płci, wieku).

04. Obserwuj, jak zmieniają się wskaźniki sprawiedliwości w miarę 
gromadzenia większej liczby interakcji użytkowników.

Ćwiczenie:

01. Które grupy użytkowników są systematycznie 
faworyzowane lub dyskryminowane?

02. Jak zmienia się jakość rekomendacji w czasie?

03. Jakie kompromisy pojawiają się przy próbie 
zrównoważenia zaangażowania i 
sprawiedliwości?

Pytania do dyskusji:.

https://tinyurl.com/5n8vvpx9
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06 Referencje

To ćwiczenie ilustruje dynamiczny charakter 
sprawiedliwości w internetowych systemach 
rekomendacji.

05 Wnioski

Chociaż początkowa wydajność systemu może
wydawać się obiektywna, długotrwałe działanie
może prowadzić do znacznych dysproporcji
spowodowanych pętlami sprzężenia zwrotnego i
stronniczością popularności. Te nierówności
wpływają na doświadczenia użytkowników i ich
zaufanie, szczególnie w przypadku grup
użytkowników niedostatecznie reprezentowanych
lub mniejszościowych. Stosując wskaźniki
sprawiedliwości i analizując ewolucję stronniczości
w czasie rzeczywistym, studenci uzyskują

praktyczną wiedzę na temat etycznego wdrażania
uczenia maszynowego. Badają również
ograniczenia statycznej oceny i znaczenie ciągłego
monitorowania sprawiedliwości w systemach
adaptacyjnych. Ćwiczenie podkreśla napięcie
między optymalizacją zaangażowania a
zapewnieniem sprawiedliwego traktowania –
kluczowym wyzwaniem dla etycznego
projektowania sztucznej inteligencji.
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https://www.youtube.com/@CiEGateway
https://www.linkedin.com/company/cooperation-in-education-gateway
https://www.instagram.com/cie.gateway?igsh=dzNxYnl3OGpnbmpn

