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....................... ° 01 Streszczenie

Rodzaj OER

Cwiczenie scenariuszowe

z wykorzystaniem Google
Colab (riverML)

.................. cel/przeznaczenie
o ¢wiczenie oparte na scenariuszu stawia studentéw w roli praktyka uczenia

maszynowego (ML), ktérego zadaniem jest analiza sprawiedliwosci
internetowego systemu rekomendacji. Bada ono, w jaki sposéb ciggte

v dostosowywanie sie do zachowan uzytkownikdw moze z czasem wzmacniac
istniejgce uprzedzenia. Studenci beda mieli za zadanie zidentyfikowac
uprzedzenia i ocenic strategie ich tagodzenia.

Oczekiwane efekty ksztatcenia

Student bedzie potrafit:

» Zidentyfikowac potencjalne zrédta stronniczosci w
rekomendacjach generowanych przez ML;

* Poréwnac wskazniki sprawiedliwosci, takie jak parytet
demograficzny i rownos¢ ekspozycji; \ 4

* Zrozumiec, w jaki sposdb petle sprzezenia zwrotnego wptywajg
na sprawiedliwos¢ w systemach rekomendacji online w miare
uptywu czasu.

Clawia

kluczowe

Sugerowane
Metodologiczne
Podejscie

Uczenie maszynowe

Rekomendacje
Stronniczosc
Sprawiedliwosé

Nauka oparta na
problemach.




W kontekscie coraz bardziej spersonalizowanych
doswiadczen cyfrowych systemy rekomendacji
oparte na sztucznej inteligencji odgrywaja
kluczcowg role w ksztattowaniu zachowan
konsumentéw, wptywaniu na decyzje zakupowe
oraz okreslaniu widocznosci produktow i tresci
w roznych segmentach uzytkownikow.

Chociaz systemy te oferujg znaczne korzysci w
zakresie marketingu i optymalizacji dziatalnosci,
budzg one réwniez pilne obawy etyczne i
regulacyjne, szczegdlnie w odniesieniu do
sprawiedliwosci, przejrzystosci i potencjalnej
dyskryminacji (Akter et al., 2022; Bozdag, 2013).

Systemy rekomendacyjne nie sg jedynie
artefaktami  algorytmicznymi, ale ztozonymi
konstrukcjami  socjotechnicznymi, na  ktére

wptywajg decyzje ludzkie na kazdym etapie — od
gromadzenia danych i projektowania modeli po
interpretacje wynikow i wdrazanie (Bozdag, 2013).
Stronniczo$é moze wynikaé z wielu zrédet: ludzkich
uprzedzen, ograniczen technicznych lub
niezgodnosci  kontekstowych. Szczegdlnie w
srodowiskach marketingowych stronniczos¢ ta
moze sie wzajemnie oddziatywa¢ i nasilaé,
ksztattujgc nie tylko wydajnosc systemu, ale takze
doswiadczenia uzytkownikow i skutki spoteczne
(Akter et al., 2022).

Istotng kwestig jest iteracyjny charakter systemow
rekomendacyjnych, ktdre opierajg sie na opiniach
uzytkownikow w celu ponownego szkolenia i
udoskonalania modeli predykcyjnych. Ta petla
informacji zwrotnej moze wzmacniaé istniejgca
nierébwnowage miedzy danymi wejsciowymi a
wynikami, prowadzac do utrzymujacych sie
dysproporcji w czasie (Sun et al., 2020). Poniewaz
modele stale uwzgledniajg nowe dane i
preferencje uzytkownikéw, ich sprawiedliwosé i
doktadnosé podlegajg dynamicznym zmianom. Jesli
nie zostanie to skontrolowane, moze to skutkowac
nadmiernym dostosowaniem do dominujgcych

zachowan uzytkownikow, pogtebiajac
niedostatecznag reprezentacje grup
mniejszoSciowych i ograniczajgc roznorodnosé

tresci — zjawisko zwigzane z algorytmicznym
gatekeepingiem i wzrostem popularnosci baniek
filtrujgcych (Harambam et al., 2018).




Zainspirowane tymi wyzwaniami ¢wiczenie
oparte na scenariuszach zacheca studentéw do

zgtebiania etycznych aspektéw systemow
rekomendacyjnych, wykorzystujgc zbior danych
MovieLens 100K jako platforme testowg.

Poprzez praktyczne eksperymenty studenci badaja,
w jaki sposéb algorytmiczne petle sprzezenia
zwrotnego  moga  nieumyslnie  wzmacniac
nieréwnosci, w szczegblnosci poprzez
znieksztatcanie widocznosci tresci i faworyzowanie
preferencji wiekszosci. Zacheca sie ich do zbadania
zarowno technicznych, jak i etycznych aspektéw
tych systemow, t3czac wiedze teoretyczng z
praktyczng analizg. Takie podejscie pedagogiczne
sprzyja krytycznej swiadomosci ryzyka zwigzanego
z nieetyczng personalizacjg, w tym utratg zaufania
konsumentéw, szkodg dla reputacji i ograniczonym
dostepem do mozliwosci dla uzytkownikéw

marginalizowanych. Cwiczenie podkreéla, ze
sprawiedliwo$¢ w sztucznej inteligencji nie jest
statyczng  oceng, ale dynamiczng, ciggla
odpowiedzialnoscig. Wraz z ewolucjg preferenc;i
uzytkownikéw i zmianami tresci, modele muszg sie
dostosowywaé, aby zachowac¢ zréwnowazong
wydajnos¢ we wszystkich grupach uzytkownikow.
Ostatecznie to  doswiadczenie  edukacyjne
wyposaza studentow w narzedzia do
projektowania systemdéw sztucznej inteligencji,
ktére sg nie tylko skuteczne i wydajne, ale takze
sprawiedliwe, przejrzyste i spotecznie
odpowiedzialne.

o Wskazniki sprawiedliwosci

pozycji I, definiowany jako:

Btad bezwzgledny oszacowania — mierzy
bezwzgledny btgd miedzy przewidywang oceng a
rzeczywistg oceng przyznang przez uzytkownika u

Ea(U, z) = |'f=u,i — Tu,i

m Btad przeszacowania — mierzy, o ile prognoza
przeszacowuje rzeczywistg ocene, definiowany jako:

m Btad niedoszacowania — mierzy, o ile prognoza
zaniza rzeczywistg ocene, definiowany jako:

eu(u, 1) = max(ry ; — 7u:,0)

oceny, definiowany jako:

m Btad oszacowania wartosci — mierzy btad ze
znakiem miedzy przewidywang oceng a rzeczywis

Ey (u,i) = Ft{,i — Ty,i

>

€o(U,1) = max(fy ; — Ty i, 0)



+ 03 Prezentacja narzedzi

Charias iact tn nr-nn'l:rl-ne do
testowania algorytmoéw

W tym ¢wiczeniu
wykorzystano zbidr danych

: Zbidr danych zawiera istotne
Movielens 100K,

\ANIZWAIANIA '"’Viaza ne z

powszechnie stosowany
punkt odniesienia W
badaniach nad systemami
rekomendacji. Zbior danych
zawiera 100 000 ocen, 943
uzytkownikow, 1682 filmy, a
takze dane demograficzne
uzytkownikow (np. wiek,
ptec, zawod).

RiverML! to biblioteka open source w jezyku
Python, zaprojektowana specjalnie do uczenia
maszynowego na strumieniach danych. Zapewnia
narzedzia do tworzenia, szkolenia i oceny modeli,
ktére uczg sie stopniowo na podstawie danych
przychodzgcych w czasie rzeczywistym, a nie w
partiach. RiverML obstuguje zaréwno algorytmy
uczenia nadzorowanego, jak i nienadzorowanego,
oferujagc funkcje takie jak adaptacyjne uczenie sie,
wykrywanie dryfu koncepcyjnego i wstepne
przetwarzanie  strumieni.  Jego modutowa

1. Samouczek Riverml — https://riverml.xyz/latest/introduction/installation/

1

uczciwoscia

Nierownomierny rozkfad
reprezentacji w grupach
................ demograficznych;

..Nierdwnomierny.rozktad ocen;

Nadmierna reprezentacja
popularnych pozycji.

Cechy te sprawiajg, ze MovieLens 100K
idealnie nadaje sie do badania
stronniczosci i sprawiedliwosci
algorytmow rekomendaciji.

konstrukcja utatwia faczenie modeli, etapow
wstepnego przetwarzania i strategii oceny, co
czyni go poteznym narzedziem do zastosowan
zwigzanych z uczeniem sie online, takich jak
wykrywanie oszustw, systemy rekomendacji i
analiza danych z czujnikow. Metryki
sprawiedliwos$ci dostepne w bibliotece zostaty
wdrozone przez zespot FEP, przyczyniajagc sie do
etycznej oceny modeli strumieniowych.

Narzedzie to umozliwia
wykonywanie procesow
oceny sprawiedliwosci
oraz wizualne

pordéwnanie
skutecznosci
rekomendacji w réznych

grupach i w czasie.



http://1https/riverml.xyz/latest/introduction/installation/
http://1https/riverml.xyz/latest/introduction/installation/
http://1https/riverml.xyz/latest/introduction/installation/

....................... . 04 C'wiczenia praktyczne

Cwiczenie TS

Wejdz na strone https://tinyurl.com/5n8vvpx9, zeby otworzy¢
dostarczony notatnik Jupyter.

Uruchom wszystkie komorki w notatniku (kliknij karte Runtime, a
nastepnie Run All).

m Przeanalizuj i poréwnaj wskazniki sprawiedliwosci w réznych
grupach uzytkownikéw (np. wedtug ptci, wieku).

Obserwuj, jak zmieniajg sie wskazniki sprawiedliwosci w miare
gromadzenia wiekszej liczby interakcji uzytkownikdw.

Pytania do dyskusji S

(V) Ktore grupy uzytkownikéw sg systematycznie
faworyzowane lub dyskryminowane?

m Jak zmienia sie jakos¢ rekomendacji w czasie?

Jakie kompromisy pojawiajg sie przy probie
zrbwnowazenia zaangazowania i
sprawiedliwosci?



https://tinyurl.com/5n8vvpx9

....................... ° 05 WniOSki

To ¢éwiczenie ilustruje dynamiczny charakter
sprawiedliwosci w internetowych systemach
rekomendac;ji.

Chociaz poczatkowa wydajnos¢ systemu moze praktyczng wiedze na temat etycznego wdrazania
wydawac sie obiektywna, dfugotrwate dziatanie uczenia maszynowego. Badaja réwniez
moze prowadzi¢ do znacznych dysproporcji ograniczenia statycznej oceny i znaczenie ciggtego
spowodowanych petlami sprzezenia zwrotnego i monitorowania sprawiedliwosci w systemach
stronniczoscia  popularnosci. Te nieréwnosci adaptacyjnych. Cwiczenie podkresla napiecie
wptywajg na doswiadczenia uzytkownikéw i ich miedzy optymalizacja zaangazowania a
zaufanie, szczegdlnie w  przypadku grup zapewnieniem sprawiedliwego traktowania -
uzytkownikéw niedostatecznie reprezentowanych kluczowym wyzwaniem dla etycznego
lub  mniejszosciowych.  Stosujgc  wskazniki projektowania sztucznej inteligencji.

sprawiedliwosci i analizujgc ewolucje stronniczosci
w czasie rzeczywistym, studenci uzyskujg
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https://www.youtube.com/@CiEGateway
https://www.linkedin.com/company/cooperation-in-education-gateway
https://www.instagram.com/cie.gateway?igsh=dzNxYnl3OGpnbmpn

