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....................... « 01 Resumo

Tipo de REA

Exercicio de cenario usando o Google
Colab (riverML)

e Objetivo/FinaIidade

Este exercicio baseado em cendrios coloca os alunos no papel de um
profissional de aprendizagem automatica (ML) encarregado de analisar a
imparcialidade do sistema de recomendacgao online. Ele explora como a
v adaptacdo continua ao comportamento do utilizador pode amplificar os
preconceitos existentes ao longo do tempo. Os alunos serdo desafiados a
identificar preconceitos e avaliar estratégias de mitigacao.

O aluno sera capaz de:

* ldentificar potenciais fontes de viés nas recomendacdes geradas
por ML;

* Comparar métricas de equidade, como paridade demografica e
equidade de exposi¢ao; \ 4

* Compreender como os ciclos de feedback afetam a equidade ao
longo do tempo em sistemas de recomendacdo online.

Sugerido
Metodologico
Abordagem

Aprendizagem automatica
Recomendacao
Preconceitos

: Aprendizagem baseada em
Equidade

problemas.




....................... o 02 |ntrodu§50..

No contexto de experiéncias digitais cada vez mais personalizadas,
os sistemas de recomendacdo baseados em IA desempenham um
papel fundamental na formacdo do comportamento do

consumidor, influenciando as decisdes de compra e determinando
a visibilidade de produtos e conteudos em todos os segmentos de

utilizadores.

Embora esses sistemas oferecam vantagens
consideraveis para o marketing e a otimizacdo dos
negocios, eles também levantam questdes éticas e
regulatérias urgentes, particularmente no que diz
respeito a equidade, transparéncia e potencial
discriminacdo (Akter et al., 2022; Bozdag, 2013).

Os sistemas de recomendagdo ndao sao meros
artefactos  algoritmicos, mas  construgdes
sociotécnicas complexas, influenciadas por
decisdes humanas em todas as etapas — desde a
recolha de dados e o design do modelo até a
interpretacdo e implementacdo dos resultados
(Bozdag, 2013). Os preconceitos podem surgir de
varias fontes: preconceitos humanos, limita¢des
técnicas ou  desalinhamentos  contextuais.
Especialmente em ambientes de marketing, esses
preconceitos podem interagir e se agravar,
moldando ndo apenas o desempenho do sistema,
mas também as experiéncias dos utilizadores e os
resultados sociais (Akter et al., 2022).

Uma preocupacao significativa reside na natureza

iterativa dos sistemas de recomendacdo, que
dependem do feedback do utilizador para retreinar
e refinar modelos preditivos. Este ciclo de
feedback pode reforcar os desequilibrios
existentes entre entrada e saida, levando a
disparidades persistentes ao longo do tempo (Sun
et al., 2020). A medida que os modelos incorporam
continuamente novos dados e preferéncias dos
utilizadores, a sua equidade e precisdao estao
sujeitas a mudancas dindmicas. Se ndo for
controlado, isso pode resultar em um ajuste
excessivo aos comportamentos dominantes dos
utilizadores, exacerbando a sub-representacdo de
grupos minoritdrios e restringindo a diversidade de
conteddo — um fendmeno associado ao
gatekeeping algoritmico e ao aumento das bolhas
de filtro (Harambam et al., 2018).




Motivado por esses desafios, este exercicio
baseado em cenarios convida os alunos a

explorar as dimensdes éticas dos sistemas de
recomendacao usando o conjunto de dados
MovieLens 100K como banco de testes.

Através de experiéncias praticas, os alunos
examinam como os ciclos de feedback algoritmico
podem amplificar involuntariamente as
desigualdades, particularmente ao distorcer a
visibilidade do conteddo e favorecer as

marginalizados. O exercicio destaca que a
equidade na IA ndo é uma avaliagdo estatica, mas
uma responsabilidade dindmica e continua. A
medida que as preferéncias dos utilizadores
evoluem e o conteldo muda, os modelos também

preferéncias da maioria. Eles sdo incentivados a
investigar os aspetos técnicos e éticos desses
sistemas, unindo o conhecimento tedrico a analise
pratica. Essa abordagem pedagdgica promove a
consciéncia critica dos riscos associados a
personalizacdo antiética, incluindo a perda da
confianca do consumidor, danos a reputacdo e
acesso reduzido a oportunidades para usuarios

devem se adaptar para manter um desempenho
equilibrado em todos os grupos de utilizadores.
Em dltima analise, essa experiéncia de v
aprendizagem equipa os alunos com as
ferramentas para projetar sistemas de IA que ndo
sejam apenas eficazes e eficientes, mas também
equitativos, transparentes e socialmente
responsaveis.

o Métricas de equidade |

[El Erro de estimativa absoluto — mede o erro
absoluto entre a classificagdo prevista e a
classificacdo real dada pelo utilizador u ao item |,
definido por:

Ea(u:i) — |ﬁu,£ — Tu,i

2 Erro de sobreestimativa - mede o quanto a
previsao sobreestima a classificacdo real, definido
por:

Eﬂ{u: 1) = max(?ﬁu,i — Tu,iy D}

L  &y(u,1) = max(ry; — fu:,0)
['EI Erro de subestimativa - mede o quanto a previsdo
subestima a classificacdo real, definido por:

[EN Erro de estimativa de valor - mede o erro
assinado entre a classificacdo prevista e a
classificacdo real, definido por:

>




....................... .03 Apresentagﬁo das
ferramentas

Embora util para testes de
algoritmos

Este exercicio utiliza o
conjunto de dados
Movielens 100K, uma
referéncia amplamente
utilizada na investigacao de
sistemas de recomendacao.
O conjunto de dados inclui
100 000 classificagdes, 943
utilizadores, 1682 filmes,
juntamente com dados
demograficos dos
utilizadores (por exemplo,
idade, sexo, profissao).

RiverML! é uma biblioteca Python de cdédigo

aberto projetada especificamente para
aprendizado de maquina em fluxos de dados. Ela
fornece ferramentas para construir, treinar e
avaliar modelos que aprendem incrementalmente
a partir de dados que chegam em tempo real, em
vez de em lotes. O RiverML suporta algoritmos de
aprendizagem supervisionados e ndo
supervisionados, oferecendo recursos como
aprendizagem adaptativa, detecdo de desvio de
conceito e pré-processamento de fluxo. O seu

L Tutorial Riverml - https://riverml.xyz/latest/introduction/installation/

o coniunto de dados contém desafios
significativos de equidade

desafios de imparcialidade

ml Representacgao desequilibrada entre
grupos demograficos;

Distribuicoes de classificacao
distorcidas;

Representagao excessiva de
itens populares.

Estas caracteristicas tornam o MovielLens
100K ideal para explorar o viés e a
imparcialidade nos algoritmos de
recomendacgao.

design modular facilita a combinacdo de modelos,
etapas de pré-processamento e estratégias de
avaliacdo, tornando-o uma escolha poderosa para
aplicacdes de aprendizagem online, como detecdo
de fraudes, sistemas de recomendacdo e analise
de dados de sensores. As métricas de equidade
disponiveis na biblioteca foram implementadas
pela equipa FEP, contribuindo para a avaliagdo
ética dos modelos de streaming.

00

Esta ferramenta
permite a execugéio de
pipelines de avaliacdo

de equidade e a
comparagdo visual do

desempenho das

recomendagdes entre
grupos e ao longo do

tempo.



http://1https/riverml.xyz/latest/introduction/installation/
http://1https/riverml.xyz/latest/introduction/installation/
http://1https/riverml.xyz/latest/introduction/installation/

....................... - 04 Atividades praticas

Aﬁvidade .................

@ Acesse o Jupyter Notebook fornecido em https://tinyurl.com/5n8

LT

Execute todas as células no notebook (clique na guia Runtime e,
em seguida, em Run All).

m Analise e compare as métricas de equidade entre diferentes
grupos de utilizadores (por exemplo, por género, idade).

m Observe como os indicadores de eqwdade evoluem a medida que
mais interacGes dos utilizadores sao recolhidas

Sugestoes P ——

discussao ;
Quais grupos de utilizadores sao

sistematicamente favorecidos ou
desfavorecidos?

Como a qualidade das recomendag¢des muda ao
longo do tempo?

Que compromissos surgem quando se tenta
equilibrar o envolvimento com a equidade?



https://tinyurl.com/5n8vvpx9
https://tinyurl.com/5n8vvpx9

- 05 Conclusao

Este exercicio ilustra a natureza dinamica da
equidade nos sistemas de recomendacao online.

Embora o desempenho inicial do sistema possa
parecer imparcial, a operagdo a longo prazo pode
levar a disparidades significativas devido a ciclos
de feedback e viés de popularidade. Esses
desequilibrios afetam a experiéncia e a confianca
do utilizador, especialmente para grupos de
utilizadores sub-representados ou minoritarios. Ao
aplicar métricas de justica e analisar a evolugdo do
viés em tempo real, os alunos obtém uma visdo

pratica sobre a implementacdo ética do ML. Eles
também exploram as limitacdes da avaliacdo
estdtica e a importancia do monitoramento
continuo da justica em sistemas adaptativos. O
exercicio destaca a tensdo entre otimizar o
envolvimento e garantir um tratamento equitativo
— um desafio fundamental para o design ético da
IA.
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